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Abstract. Let L/K be a Galois extension of fields with Galois
group G, an elementary abelian p-group of order pn, p an odd
prime. For n > 1, L/K has non-classical Hopf Galois structures of
type G, which have been studied by looking at regular subgroups
of Hol(G) that are isomorphic to G. Think of G as an additive
group (G,+). This talk exploits the connection, introduced by
Caranti, Della Volta and Sala in 2006, between regular subgroups
of Hol(G) and associative, commutative nilpotent algebra struc-
tures A on (G,+). We briefly review three known consequences
of this connection for Hopf Galois structures. Then we describe
how the connection helps understand the lack of surjectivity of the
Galois correspondence from subHopf algebras to subfields given by
the Chase-Sweedler Fundamental Theorem of Galois Theory for a
Hopf Galois structure on L/K.

This is the text of a presentation at the workshop on Hopf Algebras
and Galois Module Theory held at the University of Nebraska at Om-
aha, May 23, 2016.

Hopf Galois structures. Let L/K be a field extension, H a cocom-
mutative K-Hopf algebra. Then L/K is an H-Hopf Galois extension if
L is an H-module algebra and the map j : L⊗K H → EndK(L) given
by j(s⊗ h)(t) = sh(t) is a bijection.

If L/K is a Galois extension with Galois group Γ, then L/K is a
KΓ-Hopf Galois extension.

Assume that L/K is a Galois extension of fields with Galois group
Γ, an elementary abelian p-group of order pn.

If L/K is also an H-Galois extension, then tensoring over K with L
yields an action

(L⊗K H)⊗K (L⊗K L)→ (L⊗K L)

making L×K L an L⊗K H -Galois extension.
This begins a sequence of correspondences:
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Three correspondences.

{Hopf Galois structures on L/K by K-Hopf algebras H of type
G ∼= Γ}

[GP87] l

{ regular subgroups N of Perm(Γ) normalized by λ(Γ) }

[By96] l

{Regular embeddings β : Γ→ Hol(G) up to equivalence }

[CDVS06] l

{Nilpotent (associative, commutative) algebra structures A on (G,+)
with Ap = 0 up to isomorphism}.

The first correspondence. The first correspondence is the main re-
sult of Greither and Pareigis [GP87]. For

L⊗K L ∼= ΓL = ⊕γ∈ΓLeγ

where {eγ : γ ∈ Γ} is a dual basis to the elements γ of Γ. Then([GP87])
L⊗KH is a group ring LN where N ⊂ Perm(Γ) acts on ΓL as a regular
group of permutations of the dual basis of Γ, and is normalized by the
image λ(Γ) of the left regular representation of Γ in Perm(Γ).

The correspondence is bijective, because given a regular subgroup N
of Perm(Γ) normalized by λ(Γ), the regularity of N implies that the
action of LN on ΓL makes the extension ΓL/L into an LN -Hopf Galois
extension. Since N is normalized by λ(Γ), Galois descent of the Hopf
Galois extension over L (that is, taking fixed subrings under the action
of Γ acting on L by the action of the Galois group of L/K and on N
by conjugation by λ(Γ)) yields a K-Hopf algebra H and an action of
H on L making L a Hopf Galois extension of K. If we start with a
Hopf Galois structure of H on L over K, base change to L and then
descend, we recover the given Hopf Galois structure on L/K.

The type of H. Let N be a regular subgroup of Perm(Γ) normalized
by λ(Γ). Then N has the same order as λ(Γ). Let G be an abstract
group of the same cardinality as Γ and α : G→ N be an isomorphism.
Then the corresponding K-Hopf algebra H has type G. Viewing N as
a subgroup of Perm(Γ), the map α : G→ N is a regular embedding of
G in Perm(Γ).
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The second correspondence. As shown in [By96], a regular em-
bedding α : G → Perm(Γ) whose image α(G) is normalized by λ(Γ)
corresponds to a regular embedding β : Γ→ Hol(G), where

Hol(G) = ρ(G)Aut(G) ⊂ Perm(G)

is the normalizer of λ(G) in Perm(G). Here ρ : G → Perm(G) is the
right regular representation of G in Perm(G). The relationship between
α and β is as follows:

How α ←→ β works. Let β : Γ → Hol(G) be a regular embedding.
Define b : Γ→ G by

b(γ) = β(γ)(eG)

for γ in Γ, where eG is the identity element of G. Then b is an identity-
preserving bijection, and b recovers β: for all g in G,

β(γ)(g) = (b(λ(γ))b−1)(g) = (C(b)λ(γ))(g)

Define α : G→ Perm(Γ) by

α(g)(γ) = (b−1(λ(g))b)(γ) = (C(b−1)λ(g))(γ).

Then α(g)(eΓ) = b−1(g) and C(b)λ(γ) = β. Then α(G) is normalized
by λ(Γ). In fact,

Proposition 1. Suppose β : Γ → Hol(λ(G)) is an regular embedding,
and let α = C(b−1)λG : G → Perm(Γ) be the regular embedding corre-
sponding to β. Then for all γ in Γ and g in G, there is some h in G
so that

β(γ)λ(g)β(γ)−1 = λ(h)

and

λ(γ)α(g)λ(γ)−1 = α(h).

Proof. The first formula follows because β maps Γ into Hol(G), the nor-
malizer of λ(G) in Perm(G). Since C(b−1)(β)(γ) = λ(γ) and C(b−1)λ(g) =
α(g), the second formula follows from the first by applying C(b−1) to
the first formula. �



4 LINDSAY N. CHILDS

The third correspondence. The third correspondence comes from
Caranti, et. al., [CDVS06], [FCC12].

Proposition 2. Let (G,+) be a finite abelian p-group. Then each
regular subgroup of Hol(G) is isomorphic to the group (G, ◦) induced
from a structure (G,+, ·) of a commutative, associative nilpotent ring
(hereafter, “nilpotent”) on (G,+), where the operation ◦ is defined by
g ◦ h = g + h+ g · h.

The idea is the following: Let (G,+) be an abelian group of order
pn , and suppose that A = (G,+, ·) is a nilpotent ring structure on
(G,+) yielding the operation ◦. Define τ : (G, ◦) → Perm(G,+) by
τ(g)(x) = g ◦ x. Then τ(g)(0) = g, and

τ(g)τ(g′)(x) = τ(g)(g′ ◦ x) = g ◦ (g′ ◦ x) = (g ◦ g′) ◦ x = τ(g ◦ g′)(x).

Thus τ is a regular embedding of (G, ◦) into Perm(G,+). Since A is
nilpotent, (G, ◦) is a group, for a◦ (−a+a2−a3 + . . .) = 0, the identity
element of (G, ◦). Moreover,

τ(g)λ(g′)τ(g)−1 = λ(g′ + gg′),

so the image τ(G, ◦) = T is a regular subgroup of Hol(G).

This process is reversible: given a regular subgroup T of Hol(G,+),
there is a nilpotent ring structure A = (G,+, ·) on G, which defines the
◦ operation as above and yields a unique isomorphism τ : (G, ◦) → T
so that τ(g)(x) = g ◦ x.

On ◦. For G elementary abelian, that is, G ∼= (Fnp ,+), then (G, ◦) is
isomorphic to the group of principal units 1 +A of the Fp-algebra with
identity

A1 = Fp1⊕ A.
The map is f : A→ 1 + A by f(a) = 1 + a. Then

f(a ◦ b) = 1 + a ◦ b = 1 + a+ b+ ab = (1 + a)(1 + b).

Hence

1 + a1 ◦ a2 ◦ . . . ◦ an = f(a1 ◦ a2 ◦ . . . ◦ a)n)

= f(a1)f(a2) · · · f(an) = (1 + a1)(1 + a2) · · · (1 + an).

In particular, if we define

a◦n = a ◦ a ◦ . . . ◦ a(n factors )

then we have what I’ll call
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Lemma 3 (Caranti’s Lemma).

a◦p =

(
p

1

)
a+

(
p

2

)
a2 + . . .+

(
p

p− 1

)
ap−1 + ap.

Applications of nilpotent algebra structures, I. The third cor-
respondence has turned out to be useful in several ways.

I. It yielded a new proof of an improved version of Featherston-
haugh’s Theorem:

Let G be a finite abelian p-group of p-rank m. If p > m + 1 then
every regular abelian subgroup N of Hol(G) is isomorphic to G.

For G elementary abelian, the theorem is:

Theorem 4. Let G be an elementary abelian p-group of order pn, and
let T be a regular subgroup of Hol(G). If p > n, then T ∼= G.

The idea is if A = (G,+, ·) is a (commutative, associative) nilpotent
ring structure on (G,+) ∼= (Fnp ,+), then an+1 = 0 for all a in A. By

Caranti’s Lemma, a◦p = ap. Since an+1 = 0 and n+ 1 ≤ p, ap = 0, and
so (G, ◦) has exponent p, hence is elementary abelian of order pn.

More generally, Caranti’s proof of the main theorem of [FCC12] I
believe can be modified to give

Proposition 5. Let p > 3, prime, and G = (G,+) be a finite abelian
p-group of order pn. Let A = (G,+, ·) be a nilpotent ring structure
on G and suppose Ap = 0. Then the regular subgroup N = (G, ◦) of
Hol(G) is isomorphic to (G,+).

Applications of nilpotent algebra structures, II. As I described
in Omaha two years ago, (see [Ch15]) it is possible to get a lower bound
on the number of isomorphism types of nilpotent algebra structures A
on G = (Fnp ,+) with A3 = 0. With the aid of an upper bound on
isomorphism types of nilpotent algebras of dimension n of Poonen, one
finds that the number of Hopf Galois structures of type G on a Galois
extension L/K with Galois group G is asymptotic to

p( 2
27

)n3

as n→∞.
The idea is to show that the number of isomorphism types of nilpo-

tent algebras for large n is p to an exponent which is a function of
order 2/27n3. Each isomorphism type corresponds to between 1 and
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|GLn(Fp)| ∼ pn
2

Hopf Galois structures, which asymptotically is irrel-
evant.

For n ≥ 6 the number of Hopf Galois structures of type (Fnp ,+) goes
to infinity with p. The case n = 5 remains open.

Applications of nilpotent algebra structures, III. As I showed
last year in Exeter (see [Ch16a]), if L/K is a Galois extension with
elementary abelian Galois group G of order pn and A is a nilpotent
algebra structure on G,+) with A3 = 0, then the corresponding regular
subgroup T of Hol(G) both normalizes and is normalized by λ(G).
Because of the latter, T yields a Hopf Galois structure on L/K directly,
without translating from the holomorph to the permutation group.

Here’s how it works.
The K-Hopf algebra H so that H = LTG consists of

{
∑
x∈G

bxτ(x) : bzx = bx−x·z for all z in G}.

which acts on a in L by∑
x∈G

bxτ(x)(a) =
∑
xinG

bxa
−x+x2

for a, b in L. Thus the multiplication in A is used to describe the Hopf
algebra H and its action on L.

Since every Hopf Galois structure on a Galois extension of order p2

corresponds to a nilpotent algebra A with A3 = 0, this applies to all
L/K Galois with Γ of order p2 relatively easily, as was in fact observed
in [By02].

It also applies to Hopf Galois structures arising from four of the five
isomorphism types of nilpotent algebras A when n = 3, and for eight
of the eleven isomorphism types of nilpotent algebras when n = 4.

Applications of nilpotent algebra structures, IV. The most re-
cent and potentially the most interesting application of nilpotent al-
gebras relates to the sub-Hopf algebra structure of Hopf algebras that
arise from nilpotent algebras. This is from [Ch16b].

A bit of background: the Fundamental Theorem of Galois Theory
(FTGT) of Chase and Sweedler [CS69] states that if L/K is a H-Hopf
Galois extension of fields for H a K-Hopf algebra H, then there is an
injection F from the set of K-sub-Hopf algebras of H to the set of
intermediate fields K ⊆ E ⊆ L given by sending a K-subHopf algebra
J to F(J) = LJ . The strong form of the FTGT holds if the injection
is also a surjection.
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Cases where the strong form of FTGT fails. For a classical Galois
extension of fields with Galois group Γ, the FTGT holds in its strong
form. But it is known from [GP87] that if L/K is a (classical) Galois
extension with non-abelian Galois group Γ, then there is a Hopf Galois
structure on L/K, the one corresponding to the regular subgroup λ(Γ)
of Perm(Γ) so that the Galois correspondence map F maps onto the
subfields E of L that are normal over K. So if Γ is not a Hamiltonian
group, then L/K has a Hopf Galois structure for which the strong form
of the FTGT does not hold.

In particular, the strong form fails extremely for the unique [By04]
non-classical Hopf Galois structure on L/K (corresponding to λ(Γ))
when Γ is a non-abelian simple group.

An abelian example. Perhaps the only wholly abelian example of
failure in the literature is in [CRV15], 3.1: let Γ ∼= C2 × C2, then
L/K has a Hopf Galois structure by H, a K-Hopf algebra of type C4.
Then by classical Galois theory, there are three intermediate subfields
between K and L, but C4 has only one intermediate subgroup, so H can
have at most one intermediate K-subHopf algebra. Hence the strong
form of the FTGT cannot hold for that Hopf Galois structure.

From [CRV16]. To approach this question we start with a result of
Crespo, Rio and Vela ([CRV16], Proposition 2.2),:

Proposition 6 (CRV16). If L/K is Galois with Galois group Γ and
is H-Hopf Galois where L ⊗K HcongLN with N a regular subgroup
of Perm(Γ) normalized by λ(Γ), then the K-subHopf algebras of H
correspond to the subgroups of N that are normalized by λ(Γ).

Applying nilpotent algebras to the FTGT.

Theorem 7. Let G be a finite abelian p-group, written additively. Sup-
pose the nilpotent algebra A = (G,+, ·) yields the regular embedding
α : (G,+)→ Perm(Γ) whose image is normalized by λ(Γ). Let L/K be
a Galois extension of fields with Galois group Γ and is a H-Hopf Ga-
lois extension where H corresponds to α(G). Then the lattice (under
inclusion) of λ(Γ)-invariant subgroups of α(G) , and hence the lattice
of K-sub-Hopf algebras of H, is isomorphic to the lattice of ideals of
A.

Subgroups of α(G) correspond to subgroups of G.

Proof. First, α : G → Perm(Γ) is an injective homomorphism from
(G,+) to Perm(Γ). So additive subgroups of G correspond to additive
subgroups of α(G) ⊂ Perm(G).
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Concerning ideals and λ-invariance. Suppose the image α(G) of
α is normalized by λ(Γ). Then for all γ in Γ, g in G, there is some h
in G so that

λ(γ)α(g)λ(γ)−1 = α(h).

By Proposition 1, this equation holds iff

β(γ)λG(g) = λG(h)β(γ).

Recalling that A = (G,+, ·) = (G, ◦), factor β = τξ where ξ : Γ →
A = (G, ◦) is an isomorphism and τ : A = (G, ◦)→ Hol(G) sends k in
G to τ(k) where τ(k)(y) = k ◦ y for y in G. Let ξ(γ) = k in A. Then
the last equation is

τ(k)λG(g) = λG(h)τ(k),

and applying this to x in G gives

τ(k)(g + x) = h+ τ(k)(x).

Since τ(k)(x) = k ◦ x, we have

k ◦ (g + x) = h+ k ◦ x.

Viewing this equation in A, where a ◦ b = a+ b+ a · b, we have

k + (g + x) + k · g + k · x = h+ k + x+ k · x.

This last equation reduces to

h = g + k · g.

Invariant subgroups of α(G) correspond to ideals of A. Now
suppose J is an ideal of A and g is in J . Then k · g is in J , so h is in J ,
and so λ(γ) conjugates α(g) in α(J) to an element of α(J). So α(J) is
normalized by λ(Γ) in Perm(Γ).

Conversely, suppose J is an additive subgroup of (G,+, ·) = A and
α(J) is normalized by λ(Γ). Then for all γ in G, g in J ,

λ(γ)α(g)λ(γ)−1 = α(h)

and α(h) is in α(J). So h is in J . Then by Proposition 1 as above, for
all k = ξ(γ) in G, and g in J , h = g+k ·g is in J . Now J is an additive
subgroup of A, so k · g is in J for all k in G, g in J . Thus J is an ideal
of A. �
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Failure of strongness.

Theorem 8. Let L/K be a Galois extension of fields with Galois group
Γ an elementary abelian p-group of order pn. Let L/K have a Hopf
Galois structure by an abelian Hopf algebra H of type G where G is
an elementary abelian p-group. Let A be the nilpotent ring structure
yielding the regular subgroup T ∼= (G, ◦) ⊂ Hol(G) corresponding to H,
where (G, ◦) ∼= Γ. Then the H-Hopf Galois structure on L/K satisfies
the strong form of the FTGT if and only if H is the classical Galois
structure by KΓ on L/K.

Proof. If A2 = 0, then (G, ◦) = (G,+), so the regular subgroup T acts
onG by τ(g)(h) = g◦h = g+h, hence T = λ(G). SinceG is abelian, the
corresponding Hopf Galois structure on L/K is the classical structure
by the K-Hopf algebra K[Γ]. So the Galois correspondence holds in its
strong form.

The converse. For the converse, view (G,+) as an n-dimensional Fp-
vector space. Suppose A2 6= 0. Then for some a, b in A, ab 6= 0. Then
the subspace Fpa does not contain ab. For if ab = ra for r 6= 0 in Fp,
then a = sba for s 6= 0 in Fp. Then

a = (sb)a = (sb)2a = . . . = (sb)ka

for all k ≥ 1. Since A is nilpotent, (sb)k = 0 for some k. Thus the
subspace Fpa is not an ideal of A.

Mopping up. The subgroup α(Fpa) of α(G) is then not normalized
by λ(Γ). But Γ ∼= G, so there are bijections between subgroups of
α(G), subgroups of G, subgroups of Γ and (by classical Galois theory)
subfields of L containingK. If some subgroup of α(G) is not normalized
by λ(Γ), then the number of K- subHopf algebras of H = L[α(G)]G is
strictly smaller than the number of subfields between K and L. So the
Galois correspondence for the H-Hopf Galois structure on L/K does
not hold in its strong form. �

There are many examples. If G is an elementary abelian p-group of
order pn and T ∼= (G, ◦) is a regular subgroup of Hol(G) corresponding
to a nilpotent ring structure A = (G,+, ·) with Ap = 0, then (G, ◦)
is an abelian group of exponent p by Caranti’s Lemma, noted earlier,
so is isomorphic to G. Hence every isomorphism type of nilpotent Fp-
algebra A of dimension n with Ap = 0 yields a Hopf Galois structure
on a Galois extension L/K with Galois group Γ ∼= G for which the
strong form of the FTGT fails. By [Ch15], there are many examples
for large n.
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The cyclic case.

Proposition 9. Let L/K be a Galois extension of fields with Galois
group Γ cyclic of order pn, p odd. Let the K-Hopf algebra H give a
Hopf Galois structure on L/K. Then H has type G where G ∼= Γ, and
the Galois correspondence for that Hopf Galois structure holds in its
strong form.

One can show that the commutative nilpotent algebra structures
on (Z/pnZ,+) have the form Ad for d modulo pn−1, where for r, s in
(Z/pnZ,+), the multiplication is

r · s = rspd.

It is then easy to check that the ideals of Ad are the principal ideals
generated by pr, for r = 0, . . . , n. Since there are only n+1 intermediate
fields E with K ⊆ E ⊆ L, the theorem above implies that for every
Hopf Galois structure on L/K, the Galois correspondence holds in its
strong form.

Egregious failure of the strong form. Return to the elementary
abelian case with Γ ∼= G = (Fnp ,+).

Let A be the primitive n-dimensional nilpotent Fp-algebra generated
by z with zn+1 = 0. Then (A,+) ∼= (Fnp ,+) and so the multiplication
on A yields a nilpotent Fp-algebra structure on (G,+) = (Fnp ,+). Let
Γ ∼= (Fnp , ◦) where the operation ◦ is defined using the multiplication
on A by a ◦ b = a+ b+ a · b.

Theorem 10. Let G be an elementary abelian p-group of order pn.
Let A be a primitive Fp-algebra structure A on G, and let (G, ◦) be
the corresponding group structure on Fnp . Suppose L/K is a Galois
extension of fields with Galois group Γ ∼= (G, ◦). Then the primitive
nilpotent Fp-algebra A corresponds to an H-Hopf Galois structure on
L/K for some K-Hopf algebra H, where the K-subHopf algebras of H
form a descending chain

H = H1 ⊃ H2 ⊃ . . . ⊃ Hn ⊃ K.

Hence the Galois correspondence F for H maps onto exactly n+1 fields
F with K ⊆ F ⊆ L.

Given Theorem 7, we just need to show that ideals of A are Ji = 〈zi〉
for i = 1, . . . , n, which is pretty routine.
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Since the correspondence between ideals of A and λ(Γ) invariant sub-
groups of α(G) is lattice-preserving, we have a single filtration

α(G) = α(J1) ⊃ α(J2) ⊃ . . . ⊃ α(Jn) ⊃ 0.

of λ(G)-invariant subgroups of α(G). If H is the corresponding K-
Hopf algebra making L/K into a Hopf Galois extension, then H has a
unique filtration of K-sub-Hopf algebras,

H = H1 ⊃ H2 ⊃ . . . ⊃ Hn ⊃ K.

How egregious? For A a primitive nilpotent Fp-algebra with An+1 =
0, the corresponding group (G, ◦) is isomorphic (by a 7→ 1 + a) to the
group of principal units of the truncated polynomial ring Fp[x]/(xn+1Fp[x].
For its structure, see [Ch07]. In particular (G, ◦), hence Γ, is an ele-
mentary abelian p-group if and only if p > n.

Thus in the last theorem, when p > n, then L/K is classically Galois
with Galois group Γ ∼= (Fnp ,+). So the number of subgroups of Γ, and
hence the the number of subfields E with K ⊆ E ⊆ L, is equal to the
number of subspaces of Fnp , namely

n∑
r=1

(pn − 1)(pn − p) · · · (pn − pr−1)

(pr − 1)(pr − p) · · · (pr − pr−1)
∼ npn

for n large. So the Galois correspondence map F is extremely far
from being surjective for a Hopf Galois structure corresponding to a
nilpotent algebra structure A with dim(A/A2) = 1.

n = 2. One collection of examples in the literature are the non-trivial
Hopf Galois structures on a Galois extension L/K of degree p2 with
Galois group G ∼= (F2

p,+). All of them correspond to nilpotent Fp-
algebras A with dim(A/A2) = 1, A3 = 0. If x1, x2 is a Fp-basis of G
and the multiplication on A = (G,+) is by x2

1 = dx2 with d 6= 0 and
x2xi = 0 for i = 1, 2, then the corresponding K-Hopf algebra has the
form HT,d, in the notation of [By02], and have type G. So in retrospect,
all of those non-classical Hopf Galois structures were abelian examples
of the failure of the strong form of the FTGT.
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